Arachidonic acid metabolites contribute to the irreversible depolarization induced by in vitro ischemia.

نویسندگان

  • E Tanaka
  • S Niiyama
  • S Sato
  • A Yamada
  • H Higashi
چکیده

Intracellular recordings were made from hippocampal CA1 neurons in rat slice preparations. Superfusion with oxygen- and glucose-deprived medium (in vitro ischemia) produced a rapid depolarization approximately 5 min after the onset of the superfusion. Even when oxygen and glucose were reintroduced immediately after rapid depolarization, the membrane depolarized further (persistent depolarization) and reached 0 mV (irreversible depolarization) after 5 min from the reintroduction. The pretreatment of the slice preparation with a phospholipase A2 (PLA2) inhibitor, para-bromophenacyl bromide, or a cytochrome p-450 inhibitor, 17-octadecynoic acid, significantly restored the membrane to the preexposure potential level after the reintroduction of oxygen and glucose. The administration of 14,15-epoxyeicosatrienoic acid or 20-hydroxyeicosatetraenoic acid did not change the latency of the rapid depolarization and did not allow the membrane potential to recover after the ischemic exposure. In contrast, after pretreatment with cyclooxygenase or lipoxygenase inhibitors, such as indomethacin, resveratrol, Dup-697, nordihydroguaiaretic acid, and 3,4-dihydrophenyl ethanol, a minority of neurons tested showed postischemic recovery from the persistent depolarization. Improved recovery was also seen after treatment with the free radical scavengers, edaravone and alpha-tocopherol. These results suggest that the activation of the arachidonic acid cascade via PLA2 and the free radicals produced by arachidonic acid metabolism contribute to the irreversible depolarization produced by in vitro ischemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of arachidonic acid, lipoxygenase, and mitochondrial depolarization in reperfusion arrhythmias.

We have sought evidence that arachidonic acid (AA) induces mitochondrial depolarization in isolated myocytes by a lipoxygenase (LOX)-dependent mechanism and that such depolarization might contribute to arrhythmogenesis following ischemia-reperfusion injury. A method was developed for measuring mitochondrial depolarization in isolated adult rat myocytes in suspension, using tetramethylrhodamine ...

متن کامل

Arachidonic acid-induced apoptosis in rat hepatoma AS-30D cells is mediated by reactive oxygen species.

Arachidonic acid at micromolar concentrations produced a drastic increase of the generation of reactive oxygen species (ROS) in rat hepatoma AS-30D cells cultivated in vitro along with an increase in the incidence of apoptotic cell death. Both processes were prevented by trolox, a water-soluble tocopherol derivative, and tempol, a known antioxidative agent. A synthetic hybrid of lipoic acid and...

متن کامل

Cytosolic phospholipase A₂ inhibition is involved in the protective effect of nortriptyline in primary astrocyte cultures exposed to combined oxygen-glucose deprivation.

The protective potential of nortriptyline has been reported in a few experimental models of brain ischemia, both in vivo and in vitro. However, the detailed molecular mechanisms of the protective action of the drug are still unresolved. The aim of the present study was to determine whether treatment with low or medium concentrations of nortriptyline (0.1-10 μM) might have an effect on cPLA₂ pro...

متن کامل

Activation of cardiac afferents by arachidonic acid: relative contributions of metabolic pathways.

Arachidonic acid (AA) is metabolized via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P-450 (CP450) pathways to a variety of bioactive products. The sensitivity of cardiac afferent endings to AA and its metabolites, especially those derived from LOX and CP450 pathways, is currently unclear. We examined AA-induced activation of cardiac vagal chemosensitive afferents in non- and posti...

متن کامل

L-type Ca2+ channel blockers attenuate electrical changes and Ca2+ rise induced by oxygen/glucose deprivation in cortical neurons.

BACKGROUND AND PURPOSE Experimental evidence supports a major role of increased intracellular calcium [Ca2+]i levels in the induction of neuronal damage during cerebral ischemia. However, the source of Ca2+ rise has not been fully elucidated. To clarify further the role and the origin of Ca2+ in cerebral ischemia, we have studied the effects of various pharmacological agents in an in vitro mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 90 5  شماره 

صفحات  -

تاریخ انتشار 2003